Coronavirus pushes Folding@Home’s crowdsourced molecular science to exaflop levels

The long-running Folding@Home program to crowdsource the enormously complex task of solving molecular interactions has hit a major milestone as thousands of new users sign up to put their computers to work. The network now comprises an “exaflop” of computing power: 1,000,000,000,000,000,000 operations per second.
Folding@Home started some 20 years ago as a way — then novel, and pioneered by the now-hibernating SETI@Home — to break up computation-heavy problems and parcel them out to individuals for execution. It amounts to a crude supercomputer distributed over the globe, and while it’s not as effective as a “real” supercomputer in blasting through calculations, it can make short work of complex problems.
The problem in question being addressed by this tool (administrated by a group at Washington University in St. Louis) is that of protein folding. Proteins are one of the many chemical structures that make our biology work, and they range from small, relatively well-understood molecules to truly enormous ones.
The thing about proteins is that they change their shape depending on the conditions — temperature, pH, the presence or absence of other molecules. This change in shape is often what makes them useful — for example, a kinesin protein changes shape like a pair of legs taking steps to carry a payload across a cell. Another protein like an ion channel will open to let charged atoms through only if another protein is present, which fits into it like a key in a lock.
Coronavirus pushes Folding@Home’s crowdsourced molecular science to exaflop levels
Image Credits: Voelz et al.
See also:
Leave a comment
  • Latest
  • Read
  • Commented
Calendar Content
«    Апрель 2020    »